
DAgent: A Multi-Agent System for Device-Aware
Assistance

1st Given Name Surname
dept. name of organization (of Aff.)

City, Country
email address or ORCID

2nd Given Name Surname
dept. name of organization (of Aff.)

City, Country
email address or ORCID

Abstract—The limitations of large language models (LLMs)
in interacting with local computing environments have hin-
dered their applicability in device-aware tasks. This research
addresses this gap by introducing DAgent, a modular, multi-
agent system designed to provide personalized, context-aware
assistance through integration with the user’s system environ-
ment. The architecture comprises four specialized modules:
the Tracer module for monitoring system activities, the RAG
module for retrieval-augmented generation leveraging system
logs, the Coding Agent for interacting with the environment to
infer information or execute actions, and the Multi-Agent OS
Assistant for orchestrating workflows. DAgent was evaluated on
correctness, completeness, and clarity, scoring highly with the
baseline 14B model: 4.87, 4.53, and 4.41 out of 5, respectively.
Additionally, an ablation study removing the RAG module
demonstrated the importance of the coding agent module, which
achieved an average score of 4.45 when used independently. These
findings highlight DAgent’s ability to excel in device-aware tasks,
providing actionable, comprehensible responses and enabling
secure, supervised command execution. This work contributes to
the advancement of intelligent, device-aware assistants, bridging
the gap between language reasoning and real-world system
interaction.

Index Terms—Multi-Agent System, Large Language Mod-
els (LLMs), Retrieval-Augmented Generation (RAG), Context-
Aware Assistance, Personalized AI Assistant

I. INTRODUCTION

The recent progress in Large Language Models (LLMs)
such as OpenAI’s GPT series and Meta’s LLaMA has sig-
nificantly expanded the capabilities of AI systems across a
wide range of natural language tasks [1]. These models excel
at text generation, question answering, and coding, driven by
architectural advances and large-scale pretraining. However,
despite their linguistic fluency, LLMs remain constrained by
their limited access to external environments. Tasks requiring
direct interaction with local devices—such as editing configs,
running scripts, or monitoring systems—remain out of scope
unless integrated with specialized toolchains [2], [3].

To overcome this, recent frameworks have begun treating
LLMs as agents capable of structured interactions with APIs,
tools, and services [4]–[6]. While this “agentic” shift has
led to a wide range of applications, such as software doc-
umentation [7], most existing systems remain cloud-based,
sandboxed, or detached from the user’s actual computing
environment. This leaves a critical gap in enabling personal-
ized, device-level assistants that can safely execute commands,

persist state across sessions, and adapt to individual user
contexts.

This paper introduces DAgent, a modular, multi-agent sys-
tem designed for personalized interaction with a user’s local
operating system. DAgent integrates LLMs into agents that
can monitor system activity, retrieve personalized context, and
execute commands under supervision. The key contributions
of this work are:

• A multi-agent architecture that tightly integrates with the
local device, enabling context-aware system interaction.

• A supervised command execution pipeline with persistent
logging and traceability.

• A Tracer module for continuous system monitoring, pro-
viding historical context to improve agent decisions.

• A personalized Retrieval-Augmented Generation (RAG)
pipeline using trace logs and file snapshots.

• A general evaluation framework for device-aware multi-
agent systems, scoring them on correctness, complete-
ness, and clarity.

The rest of this paper is organized as follows: Section II
reviews related work in agentic LLMs, tool-augmented frame-
works, and system-aware AI assistants. Section III details the
architecture and components of DAgent. Section IV presents
evaluation scenarios and performance benchmarks. Section V
concludes with key takeaways.

II. RELATED WORK

The evolution of AI assistants has progressed from rule-
based systems to advanced multi-agent architectures, enabling
more sophisticated and context-aware interactions (§II-A). Re-
cent advances in AI agent systems have introduced innovative
frameworks for personalization, multi-agent collaboration, and
OS integration, which inform the design of DAgent (§II-B).

A. Evolution of AI Assistants

AI assistants have progressed from early rule-based sys-
tems like ELIZA [8] to today’s deep learning models. The
Transformer architecture [9] enabled the rise of large language
models (LLMs), trained via next-token prediction and aligned
with human preferences using reinforcement learning from
human feedback (RLHF) [10]. In parallel, intelligent agent
paradigms emerged [11], enabling goal-directed reasoning and
collaborative multi-agent systems (MAS) [12].



Recent advances in multi-agent design have addressed per-
sistent challenges like hallucination and lack of personaliza-
tion [13]. Modular coordination strategies, such as Anthropic’s
Constitutional AI [14], offer greater adaptability and relia-
bility. However, popular assistants like ChatGPT and Claude
remain limited in their ability to reason over personalized
environments or consistently produce factual, grounded re-
sponses [15].

To address these limitations, DAgent integrates retrieval-
augmented generation with a modular, multi-agent frame-
work—delivering personalized, context-aware assistance that
interacts directly with the user’s computing environment.

B. Recent Advances in AI Agent Systems

Recent innovations in AI agent systems have sought to over-
come the contextual and functional boundaries of traditional
assistants by embedding LLMs deeper into system environ-
ments. Notably, OS-integrated architectures like AIOS [16]
and MemGPT [17] propose mechanisms for tool orchestra-
tion and virtual memory management inspired by operating
systems. These approaches enable persistent and semantically
coherent agent behavior by bridging short-term LLM contexts
with long-term interaction history. DAgent extends these prin-
ciples by introducing a system-level Tracer for live monitoring
and deep personalization.

In the realm of multi-agent coordination, orchestration sys-
tems like Magentic-One [18] and OWL [19] highlight how
specialized agents—managed via lead Orchestrators or hier-
archical planners—can collaboratively solve complex tasks.
DAgent adopts a similar modular approach while focusing
specifically on tight integration with the user’s OS. By com-
bining virtual memory ideas from MemGPT, orchestration
strategies from AIOS and Magentic-One, and modular task
delegation as demonstrated in OWL, DAgent delivers a reliable
and OS-aware agent system capable of personalized and trace-
informed responses.

III. METHODOLOGY

DAgent employs a modular architecture to deliver per-
sonalized assistance. The Tracer module (§III-A) monitors
system activities, providing contextual data. The RAG module
(§III-B) retrieves personalized information, while the Coding
Agent (§III-C) handles computational tasks. The Multi-Agent
DAgent (§III-D) orchestrates these modules, ensuring coherent
and contextually-aware responses. Figure 1 illustrates the
system’s architecture and workflow.

A. Tracer Module

The Tracer module enables real-time monitoring of OS-level
events, ensuring that the assistant’s responses are grounded
in the actual system state. It bridges the gap between dy-
namic environmental context and the reasoning capabilities
of the language model. Designed to be domain-agnostic and
extensible, the Tracer supports multiple system domains such
as file systems, and networking. Each domain-specific tracer
captures events in a structured format and appends them to a

shared persistent log. The current implementation includes a
file system tracer that records metadata (e.g., file paths, times-
tamps, operation types) related to directory activities. This
event log serves as a dynamic knowledge source for the RAG
module (§III-B), enabling context-aware responses. Although
the initial focus is on filesystem events, the architecture is
built for easy extension to additional domains, enhancing the
assistant’s adaptability and system awareness.

B. RAG Module
The Retrieval-Augmented Generation (RAG) module serves

as the personalized knowledge repository for DAgent, inte-
grating device-specific data from the Tracer module (§III-A).
It processes system logs into embeddings stored in a vector
database, enabling efficient semantic retrieval. The module
comprises two components: the RAG Engine, which retrieves
relevant data using similarity-based searches, and the Sum-
marizer Agent, which synthesizes retrieved information into
coherent responses. These components ensure that user queries
are addressed with personalized, contextually relevant infor-
mation. Integrated with DAgent (§III-D), the RAG module
enhances response generation by providing enriched context,
enabling the system to deliver precise and user-specific assis-
tance.

C. Coding Agent Module
The Coding Agent module addresses computational queries

by generating, executing, and explaining code. It complements
the RAG module (§III-B) by handling tasks requiring dynamic
computation or real-time system data. The module comprises
three components: the Code Generator, which translates
queries into executable code; the Code Runner, which ex-
ecutes the code securely; and the Code Summarizer, which
provides user-friendly explanations of the results. Integrated
with DAgent (§III-D), the Coding Agent enhances the sys-
tem’s ability to address both informational and computational
queries, ensuring comprehensive assistance.

D. Multi-Agent DAgent
The Multi-Agent DAgent orchestrates the system’s work-

flow, managing user inputs and coordinating interactions be-
tween modules. It employs a modular architecture to handle di-
verse queries by dynamically assembling processing pipelines.
Key components include the Domain Analyzer, which iden-
tifies relevant domains; the Context Retriever, which gathers
contextual data from the RAG module (§III-B); and the Query
Classifier, which determines the query type. The Information
Generator and Command Generator produce responses or
commands, while the Output Presenter formats the final
output. By integrating with the RAG (§III-B) and Coding
Agent (§III-C) modules, the assistant handles complex tasks,
ensuring responses are both accurate and actionable.

IV. RESULTS & DISCUSSION

A. Evaluation Framework
Evaluating DAgent responses requires metrics beyond tra-

ditional NLP measures like BLEU or ROUGE, which fail



Fig. 1. DAgent Architecture: The system consists of four primary modules — Tracer, RAG, Coding Agent, and Main module. The workflow begins with
user input processing, followed by domain identification, information retrieval, and determining whether to provide information or execute commands.

to capture functional accuracy or contextual relevance. While
human evaluation offers depth, it lacks scalability and con-
sistency. To address this, we adopt an automated framework
where responses are rated by an LLM across three dimensions:
Correctness, Completeness, and Clarity, each scored on a
0.0–5.0 scale using structured, prompt-based rubrics. Justifi-
cations generated by the LLM are manually reviewed to refine
test design and expose framework limitations.

Correctness reflects technical accuracy and system exe-
cutability, validated against Windows 10 behaviors, including
file operations and scripting. Both CLI and GUI formats are
accepted if operationally valid.

Completeness measures whether the assistant fully ad-
dresses the user’s intent, executes available actions, and ac-
knowledges any constraints.

Clarity assesses how clearly solutions are communi-
cated—favoring structured, well-formatted responses with log-
ical flow and concise language.

This LLM-driven approach enables reproducible, high-
resolution evaluation of assistant outputs, balancing functional
correctness with usability.

B. Experiment

1) Experiment Setup: Data. A total of 289 LLM-
generated queries were created, from which 30 representative
cases—covering command and information tasks—were man-
ually selected for evaluation within the file system domain.

Environment. Experiments were conducted in a sandboxed
Windows-style file system preloaded with dummy data and
synthetic logs. This setup enabled safe execution and consis-
tent verification of assistant outputs.

C. Evaluation Results

Five model variants—Qwen2.5-14B, 7B, 3B, 1.5B, and
0.5B—were evaluated in conjunction with Qwen2.5-Coder

across the dimensions of Correctness, Completeness, and
Clarity, using the rubric described in Section IV-A. All models
were granted access to both the RAG and coding agent
tools. Scoring was performed by an independent Qwen2.5-
14B model serving as the evaluation judge.

TABLE I
EVALUATION SCORES ACROSS ALL MODELS (0–5 SCALE)

Model Correctness Completeness Clarity
Qwen2.5-14B 4.87 4.53 4.41
Qwen2.5-3B 4.10 3.83 4.19
Qwen2.5-7B 2.93 2.63 3.56

Qwen2.5-1.5B 1.47 1.30 3.20
Qwen2.5-0.5B 1.10 1.20 3.00

Superior performance was exhibited by the Qwen2.5-14B
model, which consistently produced accurate, comprehensive,
and well-structured outputs. Competitive results were attained
by the Qwen2.5-3B variant, attributed to more frequent tool
utilization. Despite its larger size, the 7B model underper-
formed, likely due to infrequent tool invocation. Further in-
spection suggests that the 7B variant adopted a conservative
approach to tool usage, frequently attempting to resolve com-
plex queries through internal reasoning alone rather than lever-
aging available external tools, which ultimately contributed
to its degraded performance. The smallest models (1.5B and
0.5B) were found to struggle with correctness and complete-
ness, though moderate clarity was maintained. These findings
suggest that effective tool usage can mitigate the limitations
of smaller models, enhancing response quality in task-oriented
assistant scenarios.

D. Ablation and Comparative Analysis

To quantify the contribution of tool integration, an ablation
study was performed using the Qwen2.5-14B model under four



tool access configurations: no tools, RAG only, Coding Agent
only, and both tools combined.

TABLE II
ABLATION STUDY: QWEN2.5-14B UNDER VARYING TOOL ACCESS

Configuration Tools Used Avg. Score
Qwen2.5-14B – No Tools (Baseline) None 3.93
Qwen2.5-14B + RAG Only RAG 3.22 (–0.71)
Qwen2.5-14B + Coding Agent Only Coding Agent 4.45 (+0.52)
Qwen2.5-14B + Coding Agent +
RAG

Both 4.64 (+0.71)

The highest score was obtained when both tools were enabled,
confirming that hybrid tool access yields the greatest perfor-
mance gains. The Coding Agent was found to contribute more
significantly than RAG when used in isolation. Notably, the
RAG-only configuration underperformed relative to the no-
tools setting, suggesting that retrieval alone may not suffi-
ciently support procedural reasoning. These results highlight
the importance of execution capabilities and the synergistic
benefit of tool integration in the Qwen2.5-14B agent system.
Model Comparison. To benchmark external models, the
performance of StarCoder2 and Qwen2.5-14B was compared
under full tool access conditions, with both the Coding Agent
and RAG modules enabled.

TABLE III
EXTERNAL MODEL COMPARISON WITH FULL TOOL ACCESS

Model Tools Used Avg. Score
Qwen2.5-14B Coding Agent + RAG 4.64
StarCoder2-15B + Phi-14B Coding Agent + RAG 4.16

While StarCoder2-15B combined with Phi-14B demonstrated
strong performance, it was outperformed by Qwen2.5-14B
model.

V. CONCLUSION

This study has introduced DAgent, a modular, multi-agent
system designed to bridge the gap between large language
models and device-level interactions. By integrating com-
ponents such as the Tracer module, RAG module, Coding
Agent, and Multi-Agent DAgent, the system demonstrates
the ability to provide personalized, context-aware assistance
while ensuring secure and supervised command execution.
The evaluation results highlight the system’s effectiveness in
addressing challenges related to correctness, completeness,
and clarity. Specifically, the baseline 14B model achieved
the highest scores across all dimensions, with an average
correctness score of 4.87, completeness score of 4.53, and
clarity score of 4.41. These results underscore the system’s
ability to deliver actionable, thorough, and comprehensible
responses. Furthermore, the ablation study revealed that the
coding agent tool alone achieved an average score of 4.45,
demonstrating its critical role in enhancing task performance.
The modular design and integration of retrieval-augmented
generation and computational capabilities underscore DA-
gent’s potential for real-world applications, including system

diagnostics, automation, and personalized user support. This
work represents a significant step toward enabling intelligent,
device-aware assistants capable of enhancing productivity and
system management.

REFERENCES

[1] T. Brown et al., “Language models are few-shot learners,” in Advances
in Neural Information Processing Systems, H. Larochelle, M. Ranzato,
R. Hadsell, M. Balcan, and H. Lin, Eds., vol. 33. Curran Associates,
Inc., 2020, pp. 1877–1901.

[2] S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, and Y. Cao,
“ReAct: Synergizing reasoning and acting in language models,” in
International Conference on Learning Representations (ICLR), 2023.

[3] T. Schick, J. Dwivedi-Yu, R. Dessi, R. Raileanu, M. Lomeli, E. Hambro,
L. Zettlemoyer, N. Cancedda, and T. Scialom, “Toolformer: Language
models can teach themselves to use tools,” in Thirty-seventh Conference
on Neural Information Processing Systems, 2023. [Online]. Available:
https://openreview.net/forum?id=Yacmpz84TH

[4] X. Liu, H. Yu, H. Zhang, Y. Xu, X. Lei, H. Lai, Y. Gu, H. Ding, K. Men,
K. Yang, S. Zhang, X. Deng, A. Zeng, Z. Du, C. Zhang, S. Shen,
T. Zhang, Y. Su, H. Sun, M. Huang, Y. Dong, and J. Tang, “Agentbench:
Evaluating llms as agents,” arXiv preprint arXiv:2308.03688, 2023.
[Online]. Available: https://arxiv.org/abs/2308.03688

[5] LangChain, “Langchain: A framework for building multi-agent llm
systems,” 2023, https://docs.langchain.com.

[6] T. B. Richards, “Auto-gpt: An experimental open-source attempt to
make gpt-4 fully autonomous,” https://github.com/Torantulino/Auto-
GPT, 2023, accessed: 2025-06-05.

[7] D. Yang et al., “Docagent: A multi-agent system for automated code
documentation generation,” arXiv preprint arXiv:2504.08725, 2025.

[8] J. Weizenbaum, “ELIZA—A computer program for the study of natural
language communication between man and machine,” Communications
of the ACM, vol. 9, no. 1, pp. 36–45, 1966.

[9] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems, vol. 30, 2017, pp. 5998–
6008.

[10] P. F. Christiano, J. Leike, T. B. Brown, M. Martic, S. Legg, and
D. Amodei, “Deep reinforcement learning from human preferences,” in
Advances in Neural Information Processing Systems (NeurIPS), 2017,
pp. 4299–4307.

[11] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
3rd ed. Upper Saddle River, NJ: Prentice Hall, 2010.

[12] M. Wooldridge and N. R. Jennings, “Intelligent agents: theory and
practice,” The Knowledge Engineering Review, vol. 10, no. 2, pp. 115–
152, 1995.

[13] J. Huang and K. C.-C. Chang, “Hallucination is inevitable: An innate
limitation of large language models,” arXiv preprint arXiv:2401.11817,
2024.

[14] Y. Bai, S. Kadavath, S. Kundu, A. Askell, J. Kernion, A. Jones,
A. Chen, A. Goldie, A. Mirhoseini, C. Olsson et al., “Constitutional
ai: Harmlessness from ai feedback,” arXiv preprint arXiv:2212.08073,
2022.

[15] J. S. Park, J. C. O’Brien, C. J. Cai, M. R. Morris, P. Liang, and
M. S. Bernstein, “Generative agents: Interactive simulacra of human
behavior,” 2023. [Online]. Available: https://arxiv.org/abs/2304.03442

[16] K. Mei, X. Zhu, W. Xu, W. Hua, M. Jin, Z. Li, S. Xu, R. Ye, Y. Ge,
and Y. Zhang, “Aios: Llm agent operating system,” 2025. [Online].
Available: https://arxiv.org/abs/2403.16971

[17] C. Packer, S. Wooders, K. Lin, V. Fang, S. G. Patil, I. Stoica, and
J. E. Gonzalez, “Memgpt: Towards llms as operating systems,” 2024.
[Online]. Available: https://arxiv.org/abs/2310.08560

[18] A. Fourney, G. Bansal, H. Mozannar, C. Tan, E. Salinas, Erkang,
Zhu, F. Niedtner, G. Proebsting, G. Bassman, J. Gerrits, J. Alber,
P. Chang, R. Loynd, R. West, V. Dibia, A. Awadallah, E. Kamar,
R. Hosn, and S. Amershi, “Magentic-one: A generalist multi-
agent system for solving complex tasks,” 2024. [Online]. Available:
https://arxiv.org/abs/2411.04468

[19] H. Guo, J. Yang, J. Liu, L. Yang, L. Chai, J. Bai, J. Peng, X. Hu,
C. Chen, D. Zhang, X. Shi, T. Zheng, L. Zheng, B. Zhang, K. Xu, and
Z. Li, “Owl: A large language model for it operations,” 2024. [Online].
Available: https://arxiv.org/abs/2309.09298


