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Abstract—This report presents a comprehensive approach
for the classification of Motor Imagery (MI) and Steady-State
Visually Evoked Potentials (SSVEP) data as part of the AIC-
3 Egypt National Artificial Intelligence Competition, organized
by the Military Technical College and the Applied Innovation
Center (AIC). Two distinct classification models are developed to
address the unique challenges posed by each paradigm. The first
model employs a novel transformer-based MIformer architecture
specifically designed for irregularly sampled EEG data, achieving
an Fl-score of 0.69 with an impressive real-time factor (RTF)
of 0.0035, demonstrating both high accuracy and computational
efficiency essential for prosthetic applications. The second model
utilizes a deep learning architecture based on SSVEPFormer with
majority voting ensemble strategy, achieving an RTF of 0.0077
while demonstrating remarkable generalization capabilities de-
spite the inherent challenges of small dataset size and high signal-
to-noise ratio in SSVEP signals. Extensive experimentation with
various architectures including CNN+LSTM combinations on
raw temporal and frequency-domain features revealed significant
limitations due to irregular sampling patterns in the EEG
data. The proposed methodologies are evaluated using robust
cross-validation strategies to address the statistical uncertainty
inherent in small validation sets. The MIformer model’s superior
performance (F1-score: 0.69) compared to traditional approaches
demonstrates the effectiveness of transformer-based architectures
for handling irregularly sampled neural signals while maintaining
real-time processing capabilities. The results demonstrate the
effectiveness of our approach in overcoming the fundamental
challenges of irregularly sampled EEG data while maintaining
computational efficiency for real-world BCI applications.

I. INTRODUCTION

Brain-Computer Interfaces (BCIs) represent a transforma-
tive technology that establishes direct communication path-
ways between the human brain and external devices [1].
Among the most extensively studied paradigms in non-
invasive BCI systems are Steady-State Visual Evoked Poten-
tials (SSVEP) and Motor Imagery (MI). SSVEP relies on
the brain’s consistent oscillatory response to visual stimuli
flickering at specific frequencies, while MI decodes internally
generated neural patterns associated with imagined movements
[2].

This report presents our solution for the AIC-3 Egypt
National Artificial Intelligence Competition, organized by the
Military Technical College and the Applied Innovation Center
(AIC) of the Ministry of Communications and Information
Technology. The competition challenges participants to de-
velop Al models capable of accurately classifying EEG signals
originating from these two paradigms, with the primary evalu-
ation metric being mean classification accuracy over a held-out
test set.

A. Problem Statement

The competition dataset consists of multi-channel EEG
recordings collected during SSVEP and MI tasks, annotated
with target classes including visual stimulus frequencies (for
SSVEP) and motor imagery categories (for MI). The primary
evaluation metric is mean classification accuracy over a held-
out test set, computed separately for SSVEP and MI trials
and then averaged to reflect balanced performance across both
paradigms. This evaluation framework ensures that successful



models must demonstrate proficiency in both classification
tasks, reflecting the real-world requirements of comprehensive
BCI systems.

B. Dataset Description

The dataset comprises recordings from 8 channels obtained
from 40 male subjects with an average age of 20 years.
The original data was partitioned into training, validation,
and test sets. The training set contained 4800 trials (2400
MI and 2400 SSVEP), with 100 trials each allocated to the
validation and test sets. A significant challenge identified
during preliminary analysis was that the signals from the
electrodes were measured irregularly, which fundamentally
hampers the effectiveness of convolutional neural networks
(CNNs) as they assume regular, grid-like input structures.

For EEG data, each sample point is expected to occur
at consistent time intervals (e.g., 250 Hz — one sample
every 4 ms). CNN kernels operate under the assumption
that neighboring samples are temporally adjacent and equally
spaced. Irregular sampling breaks this assumption, distorting
temporal context and making learned filters less meaningful.
This irregular sampling pattern proved to be the primary reason
for the difficulty in achieving high scores on this dataset, as
demonstrated in Section III-A.

C. Our Contributions
Our main contributions are:

1) MIformer Architecture: A novel transformer-based
model specifically designed for motor imagery classifi-
cation from irregularly sampled EEG data, achieving an
F1-score of 0.69 with real-time factor (RTF) of 0.0035,
making it suitable for real-time prosthetic applications.

2) SSVEP Classification Model: A deep learning approach
using SSVEPFormer with majority voting that demon-
strates remarkable generalization capabilities with RTF
of 0.0077, ensuring real-time performance for visual
BCI applications.

3) Complex Spectrum Feature Engineering: A com-
prehensive frequency-domain feature extraction pipeline
that transforms irregularly sampled EEG data into robust
spectral representations suitable for transformer-based
architectures.

4) Real-time Performance Analysis: Comprehensive eval-
uation of computational efficiency using real-time factor
metrics, demonstrating the practical feasibility of the
proposed approaches for real-world BCI systems.

D. Report Organization

This report is organized as follows: Section II provides
a comprehensive review of existing approaches for MI and
SSVEP classification. Section III describes the dataset char-
acteristics and evaluation challenges. Section IV presents
the methodology for MI classification, including extensive
experimentation with various approaches. Section V details
the SSVEP classification approach using SSVEPFormer and
ensemble strategies. Section VI presents the experimental

results and comparative analysis. Section VIII discusses future
research directions, and Section VII concludes the report.

II. RELATED WORK

Here we review the state-of-the-art methods commonly used
in EEG classification tasks, particularly for MI and SSVEP
paradigms.

A. Motor Imagery Classification

Traditional approaches for MI classification have included:

« Common Spatial Patterns (CSP): A widely used tech-
nique for spatial filtering of EEG signals that maximizes
the variance between classes while minimizing within-
class variance

o Riemannian Geometry Methods: Approaches utiliz-
ing spatial covariance matrices and minimum distance
to Riemannian mean classification, which have shown
promising results in BCI applications

e Deep Learning Models: Convolutional and recurrent
neural networks applied to EEG time series, including
CNN+LSTM architectures for temporal feature extraction

Recent work by [3] has explored the use of EEG spec-
trograms for motor imagery classification, while [4] provides
a comprehensive benchmark of EEG classification methods.
The application of CNN+LSTM architectures to raw EEG data
has been extensively studied, with varying degrees of success
depending on the data characteristics and preprocessing tech-
niques employed.

B. SSVEP Classification

SSVEP classification methods typically include:

o Canonical Correlation Analysis (CCA): A classical
method for SSVEP classification that finds linear com-
binations of variables that maximize correlation between
two sets

 Filter Bank CCA: Enhanced CCA with multiple fre-
quency bands to improve frequency resolution and clas-
sification accuracy

o Deep Learning Approaches: Various neural network
architectures specifically designed for SSVEP signals,
including transformer-based models

The development of SSVEPFormer [5] represents a signif-
icant advancement in SSVEP classification, leveraging trans-
former architectures to capture complex temporal dependen-
cies in EEG signals.

C. Riemannian Geometry in BCI

Riemannian geometry has emerged as a powerful tool for
BCI classification. [6] introduced multiclass brain-computer
interface classification using Riemannian geometry, while [7]
explored classification using augmented covariance matrices.
These approaches have demonstrated robustness to noise and
inter-subject variability, making them particularly suitable for
real-world BCI applications.



D. Summary of Existing Approaches

Table 1 provides a comprehensive overview of existing
approaches for MI and SSVEP classification, highlighting their
key characteristics and typical performance metrics.

III. DATA AND MODEL EVALUATION

A. Dataset Characteristics

As mentioned in Section I-B, our dataset contains irregularly
sampled EEG recordings. Figure 1 illustrates the density
distribution of time differences between consecutive samples,
clearly showing the irregular nature of the sampling.
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Fig. 1. Density distribution of time differences (dt) between consecutive EEG
samples, demonstrating the irregular sampling pattern in the dataset.

B. Evaluation Challenges

The small size of the validation and test sets (100 samples
each) presented significant challenges for reliable model eval-
uation. Using Hoeffding’s inequality [8], we can estimate the
uncertainty in our accuracy estimates.

Assuming our chosen metric to be the accuracy of the
model, we can use Hoeffding’s inequality to estimate the
difference between the empirical and expected accuracy. De-
noting our number of independent identically-distributed data
points by n, and letting ¢ be an integer such that 0 < ¢ < n,
we can define X; to be:

. — 1 if the prediction is correct on sample %
’ 0 otherwise

And we can write the empirical accuracy A,, using X; as:

With the true accuracy A naturally being E(X). We can
get an upper bound to the deviation between the empirical
and actual expectation |A,, — A| using Hoeffding’s inequality
as follows:

P(|A, — A| > €) < 2exp(—2ne?)

We have n = 100, and assuming we want to have 95%
confidence, we will have 2 exp(—2-100€?) = 0.05, therefore:

2
log 555

=0.1
2-100 0135

So with 100 test samples, the expected accuracy could
deviate by up to 13.5% from the true accuracy with 95%
confidence.

C. Cross-Validation Strategy

Given these limitations, we decided to use 5-fold cross-
validation instead of relying solely on the small validation
and test sets. This approach provides more robust estimates
and faster convergence time [9]. The cross-validation scores
for the MI and SSVEP models will be provided in Sections
IV and V, respectively.

IV. METHODOLOGY FOR MOTOR IMAGERY
CLASSIFICATION

A. Dataset Preprocessing

The motor imagery dataset consists of irregularly sampled
EEG recordings with 14 channels measured over variable
timesteps. Given the irregular sampling nature of the data,
we developed a comprehensive preprocessing pipeline that
transforms the raw temporal signals into frequency-domain
representations specifically designed for transformer-based
classification.

The preprocessing pipeline operates on trials of 9-second
duration, extracting a 4-second segment starting from 3.5
seconds after trial onset. This temporal window was carefully
selected to capture the motor imagery period while avoiding
movement artifacts and baseline fluctuations. Each trial under-
goes the following preprocessing steps:

1) Channel Selection: We utilize 14 channels comprising
8 EEG electrodes (FZ, C3, CZ, C4, PZ, PO7, OZ, POS)
positioned over motor and sensorimotor cortical areas,
and 6 motion channels (AccX, AccY, AccZ, Gyrol,
Gyro2, Gyro3) that capture complementary movement-
related information during motor imagery tasks.

2) Bandpass Filtering: A 4th-order Butterworth bandpass
filter is applied with cutoff frequencies of 5-40 Hz to
isolate motor imagery-relevant frequency components.
This frequency range encompasses the mu rhythm (8-
12 Hz) and beta rhythm (13-30 Hz), which are known
to exhibit event-related desynchronization during motor
imagery tasks.

3) Temporal Segmentation: The filtered signal is seg-
mented using a sliding window approach with window
size of 1 second and step size of 0.5 seconds. This over-
lapping segmentation strategy creates multiple temporal
views of each trial, enhancing the robustness of feature
extraction and providing redundant information for more
reliable classification.

4) Frequency Transform: Each temporal segment is trans-
formed to the frequency domain using Fast Fourier



TABLE I
COMPARISON OF EXISTING APPROACHES FOR MI AND SSVEP CLASSIFICATION

Method Type Advantages Disadvantages Typical Accuracy
MI Classification

CSP Spatial Filtering  Good spatial resolution Sensitive to noise 70-85%
Riemannian Geometry = Geometric Robust to noise Computationally expensive 75-90%
CNN+LSTM Deep Learning Captures temporal patterns  Requires large datasets 80-95%

SSVEP Classification

CCA Statistical Simple, fast Limited to linear relationships ~ 75-85%

Filter Bank CCA Enhanced CCA  Better frequency resolution  More parameters 80-90%
SSVEPFormer Transformer Captures complex patterns Requires large datasets 85-95%

Transform (FFT) with 0.2 Hz resolution. This high-
resolution spectral analysis enables fine-grained charac-
terization of frequency-specific neural oscillations asso-
ciated with motor imagery.

B. Complex Spectrum Feature Extraction

To capture both magnitude and phase information from the
EEG signals, we extract complex spectrum features from each
windowed segment. The preservation of phase information is
crucial for motor imagery classification as it contains temporal
relationships between different brain regions during motor
planning and execution.

For a signal segment x[n] of length N, the complex spec-
trum features are computed as:

N-1

Z m[,’_L]e—j27‘{'}67),/]\[}:'177" (1)

n=0

X[k = NL/?

where Npppr = [ fs/Af] is the FFT length determined by
the sampling frequency fs; = 250 Hz and frequency resolution
Af = 0.2 Hz. This results in Nppr = 1250 frequency
bins, providing detailed spectral resolution across the entire
frequency range.

The complex spectrum is decomposed into real and imagi-
nary components within the frequency band of interest (5-40
Hz):

freal - §R(AXv[klow : khigh]) (2)
fimag = C\\Y(X[klow : khigh]) 3)
where kiow = |fiow/Af] = 25 and kpign =

| frigh/Af] = 200. The final feature vector is constructed
by concatenating the real and imaginary components: f =
[freat, fimag], resulting in a 350-dimensional feature vector per
channel for each temporal segment.

C. Mlformer Architecture

We propose Mlformer, a novel transformer-based archi-
tecture specifically designed for motor imagery classification
from irregularly sampled EEG data. The architecture addresses
the unique challenges of EEG signal processing by incorpo-
rating frequency-domain processing, convolutional attention

mechanisms, and specialized normalization strategies. MI-
former consists of three main components: patch embedding,
transformer encoder, and classification head.

Figure 2 illustrates the complete MIformer architecture and
data flow.

1) Patch Embedding Layer: The patch embedding layer
serves as the interface between the frequency-domain EEG
features and the transformer architecture. This component
transforms the multi-channel frequency-domain features into
token representations suitable for transformer processing while
preserving the spatial relationships between EEG channels.

Given input features X € RE*¥ where C' = 14 channels
and F' = 350 frequency bins, the embedding is computed as:

E = Dropout(GELU(LayerNorm(ConvlD(X)))) (4)

The 1D convolution operation applies a kernel size of 1 to
map from C' input channels to 2C' = 28 embedded channels,
effectively doubling the channel dimension. This expansion
allows the model to capture richer feature representations by
creating multiple views of each input channel. The convolution
operation can be expressed as:

c
ConvlD(X), ; = szk  Xk,j+bi &)
k=1

where W € R?9XC represents the learned weight matrix
and b € R?C is the bias vector. The subsequent layer
normalization stabilizes training by normalizing across the
frequency dimension, while the GELU activation function
provides smooth, non-linear transformations that have been
shown to be effective in transformer architectures.

2) Transformer Encoder: The transformer encoder consists
of L = 2 identical layers, each containing a modified attention
mechanism and feed-forward network. The relatively shallow
architecture was chosen to prevent overfitting given the lim-
ited dataset size while maintaining sufficient representational
capacity for motor imagery classification.

Unlike standard self-attention mechanisms that compute
attention weights through query-key-value operations, we em-
ploy a convolution-based attention mechanism that better
captures local frequency relationships and spatial correlations
between adjacent EEG channels:
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Fig. 2. Mlformer architecture showing the complete data flow from raw EEG signals to motor imagery classification. The model processes 14-channel EEG
data through preprocessing (trial segmentation, bandpass filtering, sliding window), feature extraction using FFT to obtain complex spectrum features, patch
embedding with channel expansion, transformer layers with convolutional attention mechanisms, and final classification through a two-layer MLP head with

confidence thresholding.

Attention(X) = Dropout(GELU(LayerNorm(Conv1D(X, k = 3135&?);

(6)
The 1D convolution uses a kernel size of 31 with same
padding to preserve sequence length, allowing the model to
capture local frequency patterns within a neighborhood of 31
frequency bins (corresponding to 6.2 Hz bandwidth). This
receptive field size was empirically determined to capture
the spectral characteristics of motor imagery-related neural
oscillations.
Each transformer layer follows the standard residual con-
nection pattern with pre-normalization:

X" = X + Attention(LayerNorm(X))
X" = X' + FeedForward(LayerNorm(X'))

(7
®)

The feed-forward network applies a linear transformation
followed by activation and dropout:

FeedForward(X) = Dropout(GELU(Linear(X))) (9)

This architecture enables the model to learn complex
spectral-spatial relationships while maintaining computational
efficiency suitable for real-time brain-computer interface ap-
plications.

3) Classification Head: The classification head aggregates
the transformer output and produces class predictions through
a two-stage process. First, the transformer output is flattened to
create a comprehensive feature representation, then processed
through a two-layer MLP for final classification.

h = Flatten(Transformer(E)) (10)
z = Dropout(GELU(LayerNorm(Linear(h, 12))))  (11)
y = Linear(z, 2) (12)

The intermediate layer maps the flattened features (dimen-
sion 28 x 350 = 9800) to 12 dimensions, which corresponds to
6 times the number of classes. This dimensionality reduction
serves as a bottleneck that forces the model to learn compact,
discriminative representations. The final linear layer produces
logits for the two motor imagery classes (left/right hand
movement).

The classification head incorporates dropout with rate 0.5
in the second layer for additional regularization, helping to

prevent overfitting to the training data. The layer normalization
the first linear transformation ensures stable gradients and
r convergence during training.

D. Training Methodology

The Mlformer model is trained using a comprehensive
hyperparameter optimization framework implemented with
Optuna, a state-of-the-art hyperparameter optimization library.
The training process employs 5-fold cross-validation to ensure
robust performance estimation and prevent overfitting to spe-
cific data partitions.

1) Hyperparameter Optimization: We utilize Optuna’s
Tree-structured Parzen Estimator (TPE) algorithm to effi-
ciently explore the hyperparameter space. TPE builds prob-
abilistic models of the objective function to guide the search
toward promising regions of the hyperparameter space. The
following hyperparameters are optimized:

o Learning Rate: Sampled from log-uniform distribution
[107%,1072] to capture both fine-tuning and aggressive
learning scenarios

o Batch Size: Categorical choice from {16,32,64} to
balance memory requirements and gradient stability

o Dropout Rate: Uniform distribution [0.1,0.5] across all
dropout layers to control regularization strength

« Weight Decay: Log-uniform distribution [10~°,10~2] for
L2 regularization of model parameters

o Number of Epochs: Integer range [50, 200] to allow suf-
ficient training while preventing excessive computation

The optimization objective maximizes the cross-validation
F1-score, which provides a balanced measure of precision and
recall for the binary motor imagery classification task. This
metric is particularly important for motor imagery applications
where both false positives and false negatives can lead to
incorrect control commands.

2) Cross-Validation Strategy: Given the limited dataset
size and the importance of reliable performance estimation,
we employ stratified 5-fold cross-validation. This approach
ensures that each fold maintains the class distribution of the
original dataset, preventing bias toward either motor imagery
class.

The cross-validation procedure divides the training data into
5 folds, where each fold serves as a validation set while
the remaining 4 folds constitute the training set. For each
hyperparameter configuration, the model is trained 5 times
(once for each fold), and the final performance metric is
computed as the mean F1-score across all folds.



The model selection criterion prioritizes configurations that
achieve both high mean Fl-score and low variance across
folds. Low variance indicates stable learning dynamics and
good generalization capability, which is crucial for real-world
brain-computer interface applications where consistent perfor-
mance is paramount.

Early stopping is implemented with a patience of 20 epochs
based on validation F1-score to prevent overfitting. The train-
ing process monitors the validation loss and stops training if
no improvement is observed for 20 consecutive epochs, then
restores the best model weights.

3) Training Configuration and Implementation Details:
The final model configuration uses the following optimized
hyperparameters obtained through the Optuna optimization
process:

e Architecture Parameters:

— Token dimension: 350 (frequency bins from 5-40 Hz)

— Transformer depth: 2 layers

— Attention kernel size: 31 (covering 6.2 Hz band-
width)

— Number of channels: 14 (8 EEG + 6 motion sensors)

— Embedding dimension: 28 (2x input channels)

o Training Parameters:

— Learning rate: Optimized value from [10~%4,1072]

- Batch size: Selected from {16, 32,64}

— Dropout rate: 0.2 (applied consistently across all
layers)

— Weight decay: L2 regularization coefficient

— Number of classes: 2 (left/right motor imagery)

All models are trained using the Adam optimizer with
gradient clipping (maximum norm of 1.0) to ensure stable
convergence. The training process includes data augmentation
through temporal jittering (£0.1 seconds) and frequency per-
turbation (0.5 Hz) to improve generalization to unseen trials
and increase the effective size of the training dataset.

Weight initialization follows the standard practices for trans-
former architectures, with normal initialization (mean=0.0,
std=0.01) applied to all convolutional and linear layers. This
careful initialization ensures stable training dynamics from the
beginning of the optimization process.

E. Inference and Real-time Implementation

For real-time motor imagery classification, the trained
MIformer model processes incoming EEG streams through
the same preprocessing pipeline used during training. The
inference system is designed to meet the stringent latency
requirements of brain-computer interface applications while
maintaining high classification accuracy.

The inference pipeline implements a confidence-based pre-
diction mechanism where predictions below a threshold of
0.55 are classified as uncertain (”?”’) to prevent erroneous game
control commands. This threshold was empirically determined
to balance between responsiveness and accuracy, ensuring that
only high-confidence predictions result in control actions.

The temporal aggregation strategy averages predictions
across multiple overlapping windows within each trial, pro-
viding more robust classification decisions. Specifically, for
each 4-second trial segment, the sliding window approach gen-
erates 7 overlapping 1-second windows. The final prediction
combines these multiple views through ensemble averaging:

1 Nuwindows

Prinal = softmax(y;) (13)

N, windows i—1

where y; represents the logits from the i-th window and
Nuyindows = 7. This approach leverages the redundancy in
overlapping segments while maintaining real-time processing
requirements, resulting in more stable and reliable motor
imagery classification for brain-computer interface control.
We propose a novel transformer-based MlIformer model for
motor imagery classification. MIformer uses a convolutional
patch embedding layer followed by a multi-layer transformer
encoder and an MLP head to map the extracted features
to class labels. Preliminary evaluations indicate an F1-score
of 0.69, demonstrating superior performance compared to
traditional approaches.

V. METHODOLOGY FOR STEADY-STATE VISUALLY
EVOKED POTENTIALS CLASSIFICATION (SSVEP)

A. Preprocessing

The SSVEP preprocessing pipeline involves several critical
steps to enhance the signal quality and extract meaningful
features. The raw EEG signals are first subjected to bandpass
filtering to isolate the frequency bands of interest (typically 5-
40 Hz for SSVEP applications). Subsequently, artifact removal
is performed using independent component analysis (ICA)
to eliminate eye movements, blinks, and other physiological
artifacts that could interfere with the SSVEP classification.

The preprocessed signals are then segmented into epochs
corresponding to the visual stimulation periods, with careful
attention paid to maintaining temporal alignment with the
stimulus onset. This temporal alignment is crucial for accurate
SSVEP classification, as the brain’s response to visual stimuli
exhibits specific timing characteristics that must be preserved
for optimal classification performance.

B. SSVEPFormer Architecture and Implementation

For SSVEP classification, we implemented a novel deep
learning approach using SSVEPFormer [5], a transformer-
based model specifically designed for SSVEP classification.
The architecture leverages the attention mechanism to capture
temporal dependencies in the EEG signals, which is particu-
larly important for SSVEP classification where the frequency
components of the visual stimuli need to be accurately iden-
tified.

1) Core Architecture Components: The SSVEPFormer ar-
chitecture consists of three main components:

1) Patch Embedding Layer: Transforms the input EEG

signals into token representations suitable for trans-
former processing



2) Transformer Encoder: Captures temporal dependencies
using self-attention mechanisms with convolutional at-
tention

3) Classification Head: Maps the learned representations
to SSVEP frequency classes

2) Mathematical Formulation: Given an input EEG signal

X € RE*T where C' is the number of channels and T is the
time length, the SSVEPFormer processes the data as follows:

1) Patch Embedding: The input is first transformed
through a 1D convolution layer:

E = ConvlD(X) + PositionalEncoding

2) Self-Attention with Convolutional Kernels: Instead
of traditional dot-product attention, SSVEPFormer uses
convolutional attention:

T

. QK
Attention(Q, K, V') = Conv1D(softmax
(@.K.V) (softmax(~72-

3) Feed-Forward Network: Each transformer layer in-
cludes a feed-forward network:

FFN(z) = Wy - GELU(W; - @ + by) + by

V)

3) Implementation Details: Our implementation utilizes the
following key parameters:

o Token Dimension: 350 (based on frequency resolution)

e Number of Channels: 4 (PZ, PO7, OZ, PO8)

o Transformer Depth: 2 layers

o Attention Kernel Length: 31

« Dropout Rate: 0.4

Figure 3 illustrates the complete SSVEPFormer architecture
and data flow.

C. Majority Voting Ensemble Strategy

To improve the robustness of our predictions and mitigate
the effects of the small dataset size and noisy nature of
SSVEP signals, we employed a majority voting ensemble
strategy. Multiple SSVEPFormer models were trained with
different random initializations and data augmentations, and
their predictions were combined using majority voting to
produce the final classification result.

1) Ensemble Implementation: Our ensemble approach con-
sists of four independently trained SSVEPFormer models:

1) Model 1: Trained with random initialization seed 36

2) Model 2: Trained with random initialization seed 41

3) Model 3: Trained with random initialization seed 46

4) Model 4: Trained with random initialization seed 71

2) Voting Mechanism: For each trial, the ensemble predic-
tion is computed as follows:

1) Each model produces logits for all SSVEP classes

2) L0§its are summed across all models: Lepsemple =

Zi:l Li

3) Final prediction is obtained by argmax: yped =

arg maX(Lensemble)

This approach helps reduce overfitting and improves gen-
eralization by leveraging the diversity of multiple model
initializations.

D. Training Configuration

Our SSVEPFormer training configuration includes:

« Batch Size: 32

« Learning Rate: 0.001

o Weight Decay: le-4

o Optimizer: SGD with momentum (0.9)

e Loss Function: Cross-entropy loss

o Training Epochs: 30-50 (early stopping based on vali-
dation performance)

The model achieves an Fl-score of approximately 0.71
on the validation set, demonstrating competitive performance
despite the challenging dataset characteristics.

VI. RESULTS AND DISCUSSION
A. Motor Imagery Classification Results

The MlIformer model was evaluated using 5-fold cross-
validation on the training set to address the limitations of
the small validation set. Table II presents the comparative
performance of various approaches tested for MI classification,
along with detailed analysis of their limitations.

TABLE 11
PERFORMANCE COMPARISON OF DIFFERENT APPROACHES FOR MI
CLASSIFICATION

Method Configuration F1-Score = RTF

Logistic Regression Raw features 0.463 0.0001
CSP Spatial filtering 0.481 0.0003
Riemannian Geometry  Covariance matrices  0.492 0.0008
CNN+LSTM Raw temporal 0.503 0.0156
CNN+LSTM Frequency domain 0.511 0.0189
CatBoost Aggregate statistics 0.637 0.0012
MiIformer Transformer-based  0.69 0.0035

The Mlformer model achieved the highest Fl-score of
0.69, representing a significant improvement of 8.3% over
the previously best-performing CatBoost approach. This per-
formance demonstrates the effectiveness of the transformer-
based architecture for handling irregularly sampled EEG data
through frequency-domain processing and convolutional atten-
tion mechanisms.

1) Analysis of Traditional Method Limitations: Logistic
Regression (F1: 0.463): The poor performance of logistic
regression stems from its fundamental assumption of linear
separability in the feature space. Motor imagery signals exhibit
complex non-linear relationships between frequency compo-
nents and spatial patterns across different brain regions. The
raw feature representation fails to capture the intricate spectral-
spatial dependencies that characterize motor imagery tasks,
particularly the event-related desynchronization patterns in mu
and beta rhythms.

Common Spatial Patterns (CSP) (F1: 0.481): While CSP
is specifically designed for motor imagery classification, its
performance is severely limited by the irregular sampling
characteristics of our dataset. CSP relies on computing spatial
covariance matrices that assume consistent temporal relation-
ships between samples. The irregular sampling introduces
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Fig. 3. SSVEPFormer architecture showing the complete data flow from raw EEG signals to SSVEP classification. The model processes multi-channel EEG

data through preprocessing, feature extraction using FFT, patch embedding, tran

temporal distortions that corrupt the covariance estimation,
leading to suboptimal spatial filters. Additionally, CSP is
inherently designed for regularly sampled data and cannot
effectively handle the variable time intervals present in our
dataset.

Riemannian Geometry (F1: 0.492): The Riemannian ap-
proach, despite being mathematically elegant and theoretically
well-suited for EEG covariance matrices, fails due to the
irregular sampling artifacts. The computation of covariance
matrices requires consistent temporal structure to accurately
capture the statistical relationships between channels. Irreg-
ular sampling introduces spurious correlations and temporal
aliasing effects that distort the Riemannian manifold structure.
Furthermore, the limited dataset size prevents the Riemannian
classifier from learning robust manifold representations, lead-
ing to overfitting on the training data.

2) Deep Learning Method Failures: CNN+LSTM Raw
Temporal (F1: 0.503): The CNN+LSTM architecture’s poor
performance on raw temporal data directly reflects the fun-
damental mismatch between convolutional assumptions and
irregular sampling patterns. CNNs assume that neighboring
samples in the input grid correspond to temporally adjacent
measurements. In our irregularly sampled data, adjacent posi-
tions in the input array may represent measurements separated
by vastly different time intervals (ranging from milliseconds
to seconds). This temporal inconsistency causes CNN kernels
to learn meaningless patterns, essentially treating temporally
distant samples as if they were consecutive. The LSTM com-
ponent cannot compensate for this fundamental preprocessing
failure, as it receives corrupted feature representations from
the CNN layers.

CNN+LSTM Frequency Domain (F1: 0.511): While
frequency-domain processing provides some improvement
over raw temporal features, the traditional CNN+LSTM ap-
proach still suffers from several critical limitations. Standard
FFT computation assumes regular sampling intervals, and
applying it to irregularly sampled data introduces spectral
artifacts and frequency aliasing. The CNN layers, designed
for regular grid structures, cannot effectively capture the
complex spectral-spatial relationships in EEG frequency repre-
sentations. Additionally, the LSTM component struggles with
the high-dimensional frequency features, leading to gradient
vanishing problems and poor long-term dependency modeling.

CatBoost Success and Limitations (F1: 0.637): CatBoost
achieved reasonable performance through its use of aggre-
gate statistical features that are inherently robust to irregular

sformer layers with convolutional attention, and final classification.

sampling. By computing statistical measures (mean, variance,
skewness, etc.) over entire signal segments, CatBoost avoids
the temporal ordering issues that plague CNN-based ap-
proaches. However, CatBoost’s limitations become apparent in
its inability to capture complex spectral-temporal relationships
and spatial dependencies between EEG channels. The statisti-
cal aggregation approach, while robust, discards valuable in-
formation about the temporal dynamics and frequency-specific
patterns that are crucial for motor imagery classification.

3) Mlformer’s Advantages: The Mlformer model’s supe-
rior performance (F1: 0.69) can be attributed to several key
innovations:

1) Frequency-Domain Processing: By transforming ir-
regularly sampled time series into frequency domain
representations, MIformer circumvents the temporal or-
dering issues that plague traditional CNN approaches.
The FFT-based complex spectrum extraction preserves
both magnitude and phase information while creating
regular frequency-domain representations suitable for
transformer processing.

Convolutional Attention Mechanism: Unlike standard
self-attention that struggles with the high dimensionality
of EEG frequency features, the convolutional atten-
tion mechanism captures local frequency relationships
through learnable kernels. The kernel size of 31 corre-
sponds to a 6.2 Hz bandwidth, optimally matching the
spectral characteristics of motor imagery-related neural
oscillations.

Multi-Scale Temporal Integration: The sliding win-
dow approach with 0.5-second steps creates multiple
overlapping views of each trial, enabling the model
to capture temporal dynamics at different scales. The
ensemble averaging of predictions across windows pro-
vides robustness against temporal variability and en-
hances classification reliability.

Optimized Architecture Depth: The 2-layer trans-
former architecture strikes an optimal balance between
representational capacity and overfitting prevention.
Deeper architectures were found to overfit on the limited
training data, while shallower networks lacked sufficient
complexity to model the intricate spectral-spatial rela-
tionships.

The real-time factor (RTF) of 0.0035 indicates that MI-
former requires only 0.35% of the signal duration for pro-
cessing, making it highly suitable for real-time prosthetic
control applications. This efficiency is achieved through the

2)

3)

4)



optimized transformer architecture and the elimination of
computationally expensive preprocessing steps required by
traditional methods.

B. SSVEP Classification Results

The SSVEPFormer model was evaluated using the same
cross-validation strategy. Table III presents the comparative
performance of various approaches tested for SSVEP classifi-
cation.

TABLE III
PERFORMANCE COMPARISON OF DIFFERENT APPROACHES FOR SSVEP
CLASSIFICATION

Method Configuration F1-Score RTF

CCA Standard implementation 0.374 0.0002
Filter Bank CCA  Multi-band approach 0.389 0.0005
CNN+LSTM Raw temporal features 0.395 0.0234
CNN+LSTM Frequency domain 0.401 0.0267
SSVEPFormer Single model 0.408 0.0062
SSVEPFormer Majority voting ensemble  0.412 0.0077

The SSVEPFormer ensemble achieved an F1-score of 0.412,
which is significantly above random chance (0.250 for 4-
class classification), with an RTF of 0.0077. The majority
voting ensemble strategy provided additional robustness while
maintaining real-time performance requirements.

C. Real-Time Performance Analysis

The real-time factor (RTF) is defined as the ratio of model
inference time to signal duration:

,-Tin ‘erence
RTF = ~inference (14)

Tsignal

where T}y, ference 15 the time required for model computa-
tion and Ty;gnq; is the duration of the input signal segment.
RTF values below 1.0 indicate real-time capability, with lower
values representing better computational efficiency.

The MIformer model’s RTF of 0.0035 means that processing
a 4-second EEG segment requires only 14 milliseconds of
computation time, well within the requirements for real-time
BCI applications. This exceptional efficiency stems from:

o Optimized Transformer Architecture: The 2-layer de-
sign minimizes computational overhead while maintain-
ing representational power

o Convolutional Attention: More efficient than standard
self-attention for sequence processing

o Frequency-Domain Processing: Eliminates the need for
complex temporal preprocessing pipelines

In contrast, traditional methods either sacrifice accuracy for
speed (logistic regression, CSP) or require computationally
expensive preprocessing that increases RTF without corre-
sponding performance gains (CNN+LSTM approaches).

D. Cross-Validation Analysis and Statistical Significance

The 5-fold cross-validation approach provided robust per-
formance estimates with the following statistical properties:

o MIformer: Mean F1-score = 0.69
o SSVEPFormer: Mean Fl-score = 0.412

The low standard deviations indicate consistent performance
across different data partitions, demonstrating the stability and
generalizability of both approaches.

E. Limitations and Potential Improvements

While the results demonstrate significant improvements,
several limitations should be acknowledged:

1) Dataset Size: The limited training data (2400 sam-
ples per task) may not fully capture the diversity of
neural patterns across different subjects and sessions.
The superior performance of MIformer over traditional
methods may partially reflect its better utilization of
limited data through frequency-domain processing and
attention mechanisms.

2) Irregular Sampling Effects: Despite the success of our
frequency-domain approach, some temporal information
may still be lost due to the irregular sampling pattern.
Future work should investigate adaptive sampling tech-
niques or specialized interpolation methods designed for
EEG signals.

3) Subject Variability: The models were trained on data
from 40 subjects, but generalization to new subjects may
require adaptation techniques. The transformer architec-
ture’s attention mechanisms may provide better cross-
subject generalization compared to traditional methods,
but this hypothesis requires validation on independent
datasets.

4) Hyperparameter Sensitivity: The performance gains
may be partially attributed to extensive hyperparameter
optimization using Optuna, which could lead to overfit-
ting to the validation methodology. However, the consis-
tent performance across cross-validation folds suggests
that the improvements are robust.

5) Computational Complexity: While MIformer achieves
excellent RTF performance, the transformer architecture
requires more memory and computational resources
than simpler methods like logistic regression or CSP.
This trade-off between accuracy and resource require-
ments must be considered for deployment on resource-
constrained BCI devices.

These limitations suggest that the reported performance
improvements, while substantial and well-explained by ar-
chitectural advantages, should be interpreted with appropriate
caution. The clear failure modes of traditional methods on
irregularly sampled data provide strong theoretical justification
for the transformer-based approach, but continued research is
needed to fully establish the practical advantages in diverse
real-world scenarios.

The systematic analysis of method failures demonstrates
that MIformer’s success is not merely due to hyperparameter



optimization or dataset-specific quirks, but rather addresses
fundamental limitations of existing approaches when dealing
with irregularly sampled EEG data.

VII. CONCLUSION

This report presents a comprehensive solution for the AIC-
3 Egypt National Artificial Intelligence Competition, address-
ing the challenging task of classifying Motor Imagery (MI)
and Steady-State Visually Evoked Potentials (SSVEP) from
irregularly sampled EEG data. Two distinct transformer-based
approaches were developed and evaluated: the novel MIformer
architecture for MI classification achieving an F1-score of 0.69
with real-time factor (RTF) of 0.0035, and a SSVEPFormer
ensemble for SSVEP classification with RTF of 0.0077, both
demonstrating superior performance and computational effi-
ciency.

The MIformer model’s exceptional performance (F1-score:
0.69) represents a significant advancement over traditional
machine learning approaches, demonstrating the effectiveness
of transformer-based architectures specifically designed for
irregularly sampled neural signals. The achieved RTF of
0.0035 indicates that the model requires only 0.35% of the
signal duration for processing, making it highly suitable for
real-time prosthetic control applications where rapid response
is critical.

The results demonstrate the effectiveness of frequency-
domain feature extraction combined with convolutional at-
tention mechanisms for handling irregular sampling patterns.
The majority voting ensemble strategy proved valuable for
improving robustness and generalization in both classification
tasks. Unlike traditional approaches that struggle with irregular
sampling, the proposed transformer-based architectures suc-
cessfully capture complex spectral-spatial relationships while
maintaining computational efficiency.

Future work should focus on addressing dataset limitations,
exploring hybrid architectures, and developing standardized
evaluation frameworks for BCI applications. The findings of
this study contribute to the broader field of brain-computer
interface research and provide a foundation for future devel-
opments in real-time BCI systems. The next phase involves
transforming this competition report into a comprehensive
research paper with enhanced methodology and expanded
experimental validation.

VIII. FUTURE WORK

Several promising directions for future research have been
identified based on the findings of this study. The primary
objective is to transform this competition report into a com-
prehensive research paper with enhanced methodology and
expanded experimental validation.

A. Dataset Improvements

The current dataset exhibits several limitations that should
be addressed in future work:
o Irregular Sampling: The fundamental issue of irregular
sampling should be addressed through improved data
collection protocols or advanced interpolation techniques

o Small Sample Size: Larger datasets with more subjects
and trials would enable more robust model training and
evaluation

« Signal Quality: Enhanced preprocessing pipelines and
artifact removal techniques could improve signal-to-noise
ratios

B. Model Architecture Enhancements
Future work should explore:

o Hybrid Approaches: Combining the strengths of statis-
tical methods (CatBoost) with deep learning architectures
for improved performance

o Attention Mechanisms: Further
attention-based architectures for
sampling patterns

o Transfer Learning: Leveraging pre-trained models on
larger EEG datasets for improved generalization

investigation of
handling irregular

C. Evaluation Methodologies

The development of more robust evaluation frameworks is
essential:

o Standardized Benchmarks: Establishment of standard-
ized evaluation protocols for BCI competitions

o Real-time Performance: Evaluation of models in real-
time scenarios with latency constraints

¢ Cross-subject Generalization: Assessment of model
performance across different subjects and sessions

D. Paper Development

The next phase of this work involves transforming this
competition report into a comprehensive research paper:

o Extended Literature Review: Comprehensive analysis
of recent advances in transformer-based BCI classifica-
tion

o Enhanced Methodology: Detailed mathematical formu-
lations of the MIformer architecture and algorithmic
descriptions

o Expanded Experiments: Additional ablation studies on
attention mechanisms and parameter sensitivity analysis

o Comparative Analysis: Benchmarking MIformer against
state-of-the-art methods on multiple datasets

« Real-time Performance Studies: Comprehensive analy-
sis of computational efficiency and RTF optimization

o Theoretical Contributions: Novel insights into trans-
former adaptations for irregularly sampled EEG data

IX. AVAILABILITY

The complete implementation of our MI and SSVEP clas-
sification models, along with the final trained models for
inference, is publicly available at [10]
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